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Interactions between cross-links and 
dislocations in polyethylene crystals: 
a model of irradiation hardening 

L. G. S H A D R A K E ,  F. GUIU 
Department of Materials, Queen Mary College, London E1 4NS, UK 

The irradiation hardening of polyethylene (PE) crystals is explained in terms of the inter- 
section and interaction between cross-links and dislocations. The elastic energies and 
forces of interaction between cross-links and the dislocations responsible for the various 
plastic deformation modes are calculated using a force dipole model of a cross-link and 
the strain field of the dislocation. The elastic energies of interaction are in all cases less 
than 0.7 eV (1.12 x 10 -19 J) and they are greater for edge than for screw dislocations. The 
hardening which arises from the direct intersections is calculated using a Morse potential 
model for the cross-link strength, and it is found that these interactions involve energies 
of the order of 3.6 eV '(5.76 x 10 -19 J). From these results it is concluded that at 0 K both 
types of interaction produce similar hardening. However, since the elastic interaction 
energies are small, the hardness of cross-linked PE crystals at moderate temperatures is 
due solely to direct intersections of cross-links and dislocations. The strongest interactions 
take place between cross-links and those dislocations which produce chain-axis slip and 
this explains why this mode of deformation is readily suppressed by irradiation. The 
forces of interaction between cross-links and twin dislocations are not negligible, but 
since their interaction energies are of the order of 0.1 eV (0.16 x 10 -19 J), twinning 
deformation, at moderate temperatures, should not be affected by irradiation. By 
combining all the possible deformation modes, the relationship 

"rc = 4X -~, 

is derived for the increase in yield stress, rc (GPa), in terms of the atomic concentration 
of cross-links, • provided that these are uniformly distributed in the crystal. 

1. Introduction 
The physical properties of polymers are greatly 
affected by ionizing radiation, and this effect has 
found important practical applications, for 
example, in the irradiation hardening of poly- 
ethylene. Since bulk deformation of polyethylene 
requires the plastic flow of the crystalline regions, 
the irradiation-induced changes in the crystalline 
phase should play a significant role in the harden- 
ing process. 

Information about the effects of irradiation 
on the specific plastic deformation modes which 
operate within the polyethylene crystals is rather 
scarce. All results of importance have been obtained 
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by Voigt-Martin [ 1 ] and Andrews and Voigt-Martin 
[2], and concern single crystals deposited from 
solution. Stress-strain curves for different densities 
of irradiated bulk polyethylene have also been 
obtained by these workers [3]. 

Both [001] (chain axis) slip and transverse 
slip systems are strongly suppressed by 3,-irradiation 
doses from 10 to 160Mrads. The operation of 
[1 1 O] twinning appears to be unaffected by 
irradiation, and there is some evidence to suggest 
that the orthorhombic to monoclinic phase trans- 
formation is inhibited [2]. 

The yield stress of bulk spherulitic material 
increases both with crystallinity and radiation 
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dose and Andrews [3] has extrapolated the data 
to find that the yield stress of the crystalline 
phase increases by 10MPa after a 7-irradiation 
dose of 160 Mrad. 

Since cross-links between molecules are believed 
to be the main type of defect produced when, 
polyethylene is exposed to ionizing radiation, 
[5, 6], it seems justifiable to interpret the harden- 
ing effects in terms of interactions between the dis- 
locations capable of producing plastic flow, and 
the cross-links which are formed both at the 
surface of the crystal lamellae and within the 
individual crystals. 

The type of dislocations which can glide in 
polyethylene crystals are limited, and their proper- 
ties have been discussed elsewhere by the present 
authors [6, 7]. Their interaction with cross-links 
is discussed in the present work using an elastic 
model of the cross-link [8, 9]. 

The glide dislocations which need to be con- 
sidered here are those which, being energetically 
favourable, produce chain-axis slip, transverse 
slip, and twinning (Types 1, 3, 4, 6 and 7 of [6]). 

2. Interactions between cross-links and 
dislocations 

The type of interactions which can arise between 
cross-links and dislocations are illustrated in 
Figs 1 and 2. These show a projection of the crystal 
on to the (0 0 1) plane, with lines as cross-links 
between nearest-neighbour molecules. As a dis- 
location glides along the glide plane, R, it will 
experience a "direct" interaction with cross-links 
of Types 1 and 2, which intersect the glide plane. 
Further movement of the dislocation is possible 
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Figure 1 Projection o f  the  (O01)-plane showing the  
posi t ion o f  cross-linkes with respect to the  ( 1 0 0 )  slip 
dislocation glide plane. 
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Figure 2 ProJection of the (O01)-plane showing the 
position of cross4inks with respect to the ( i i 0 ) g l i d e  
plane of a dislocation. 

only by displacement, by the Burgers vector, of 
the two cross-linked molecules with respect to 
each other. In addition to the "direct" interaction, 
the cross-link has an associated stress field, so that 
as the dislocation glides, it will experience a 
varying "elastic force of interaction" with each 
cross-link in the crystal. Those cross-links which 
do not intersect the glide plane (Types 3 and 4) 
can only interact with the dislocation in this way 
("elastic' interaction). 

Both edge and screw dislocations can experience 
"direct" and "elastic" interactions in the way 
described above. Cross-links between first nearest 
neighbour molecules have been shown in Figs 1 
and 2. These cross-links are parallel to [1 1 0], 
([1 10]-type), or to [110] directions ( [1T0I-  
type). Similar interactions would arise from cross- 
links between second nearest-neighbour molecules 
([0 1 0]-type), one of which is shown in Fig. 2 
(Type 2). As will become clear later, the inter- 
actions with first and second nearest-neighbour 
cross-links do not need to be considered separately. 

3. Calculation of the elastic force of 
interaction 

The elastic energy of interaction between a cross- 
link and a dislocation can be calculated using the 
continuum strain model of the cross4ink obtained 
previously by the present authors [8, 9]. In this 
model the cross-link is described by a set of three 
orthogonal force dipoles, or by the force dipole 
tensor, Pt/, with principal components 

Pl1  = - -  ( 5 . 3 8  + 0 . 0 4 )  • 10 -19 J, 

P22 = (6.03 +- 2.54) x 10 -20 J 



and 
P33 = -- (34.0 + 0.11) x l 0  -19 J. 

The linear elastic energy of interaction is given 
by [10]. 

Ein , = --poeil], (1) 

wherep/j are the force dipole moments representing 
D the cross-link and ei] are components of the dis- 

location strain field at the cross-link. 
In a co-ordinate system, ~, with axes parallel 

to the directions of principal strains of the cross- 
link (as shown in Fig. 3) Equation 1 takes the 
form: 

Eint = -- (Pne,~' + P22e2~' + p33e~). (2) 

The dislocation strains can be written (for 
orthorhombic symmetry) in terms of the dis- 
location stresses, a ~ 

e~ = Sx, a~ + $12 a~2 + Sla o~a; (3) 

e g  = $21 a~ + $22 ae2 + $23 o~3; (4) 

caD3 = $31 a~ + $32 a g  + $33 a ~ ; a n d  (5) 

e~2 = s66 a~ 
2 ' (6) 

where Si] are the elastic constants as given in the 
Appendix. The stress fields of infinitely-long 
straight dislocations lying parallel to diad axes 
have been obtained elsewhere [11] by standard 
methods [12, 13] and are also given in the 
Appendix. 

D It is necessary to transform the strains, e~j, 
D' (in the ~i system) into the ell (referred to the 

~'i system) which are to be used in Equation 2, 

D '  en = e~ cos2a+ e~ sin2a 

+ 2e~ sin ~ cos a, (7) 
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Figure 3 Co-ordinate systems used in the calculation of 
the force of interaction. 

U t 
e22 = elOl sin2a + e~ cos2a 

- 2e g sin a cos a, (8) 

D'  e33 = e ~ .  ( 9 )  

The energy of interaction given by Equation 2 is 
obviously a function of the co-ordinates of the 
cross-link with respect to the dislocation. The 
relative position of the dislocation with respect 
to the cross-link can be described by the par- 
ameters d (perpendicular distance from the cross- 
link to the slip plane of the dislocation), and l 
(distance between cross-link and dislocation pro- 
jected on to the slip plane). 

The glide force of interaction, or the force 
exerted by the cross-link on the dislocation, 
resolved in the glide direction, is simply given by 

( 0Eint] 
Fglide -~ F = - - ~ - - - ~ ] d "  ( ]0)  

This force has been calculated for several types of 
dislocations and for the orientations of interest. 
The results are presented in Figs 4 and 6 to 8. 

3.1. Edge dis locat ion of  <0, b, 0) Burgers 
vector  ly ing along [0 0 1] (Type 6) 

As shown in Fig. 4, the glide plane of this dis- 
location is (100).  A [110]-type cross-link is 
also shown in Fig. 4. 

When the glide plane intersects the cross-link, 
i.e. d = 0, the glide force, F, is given by 

p11b 
F = 0.1 l--5--, (11) 

where b is the magnitude of the dislocation 
Burgers vector. At the cross-link itself ( /=  0) 
where the elastic force of interaction cannot be 
estimated, the "direct" interactions are more 
important. These interactions will be discussed 
later. 

For any other glide plane (d #= 0) the glide 
force is that plotted in Fig. 4. For a cross-link 
of the [1] '0]-type the force-distance curve 
would be a reflection of that shown in Fig. 4 
in both axes. 

In this result it is noted that the cross-link acts 
as a short-range obstacle to the dislocation motion 
with both attractive and repulsive forces which 
have about the same maximum value, Fmax, where 
Fmax, where 

Frna~ ~ [O. l p n b / d  2 F. (12) 
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Figure 4 Force of interaction 
between a [ 110] cross-link and 
a [0, b, 0] edge dislocation glid- 
ing on a (100) plane. 

The cross-links which interact most strongly with 
the dislocation are those adjacent to the glide 
plane, for which d = a/2 = 3.7 x 10 -a~ m, where 
a is the unit cell parameter. This gives F "  2 x 
10 -a~ N for the maximum interaction force. 

The difference between the maximum and 
minimum energies of  interaction (corresponding 
to the positions where F =  0) is found to be 
AE ~ 0.44 eV, (7.1 x 10 -20 J), and this small 
value suggests that dislocations can easily over- 
come the obstacle offered by the cross-link with 
the help of  thermal fluctuations. 

An initially straight dislocation moving under 
t he  action o f  an applied stress will bow-out between 
the cross-link obstacles, as shown in Fig. 5. The 
dislocation will overcome the cross-link at a 
critical angle 0 given by 

Fma x ~ 2T(0)  sin0 (13) 

where T(O) is the dislocation line tension. I f  
Fma x is so large that the equality is never satisfied, 
not  even for 0 = 90 ~ the dislocation bypasses the 
cross-link by the Orowan mechanism [14]. 

Values of  T(O) for all dislocation types which 

~ T ~ }  "~ocation 

pinning/ /~F point 
Figure 5 Bowing out of a dislocation segment around a 
pinning point. 

are of  interest here have been obtained and pub- 
lished elsewhere [7]. Taking Fma~ --~ 2 x 10 -1~ N 
and the value of  T(O) from Fig. 4 of [7] the 
breakaway condition is obtained, 

10-1o 
sin0 - T ' (14) 

where T is the line tension in N. 
Comparison of  this condition with Fig. 4 of  

[7] shows that the breakaway angle is 0 ~ '22  ~ 
so that the dislocation does not need to bow far 
from the pure edge orientation to overcome such 
cross-links. 

The stress, re, needed to drive this Type 6 dis- 
location through a random distribution of  cross- 
links, excluding the "direct" interations, can be 
estimated using the Friedel relation [ 15] *. 

2n~ ( f f_~)~ ,  
re = b--~ (15) 

where n is the area density of  cross-links of  strength 
Fma~ on the glide plane. With T ~ 2.8 x 10 -l~ N 
this stress becomes re "" 0.242na/2Nm -a. This can 
be written in terms of  the atomic concentration of  
cross-links of  any type, X, as in [11], r e ~" 1.4X a/= 
GPa. This is an estimate of  the hardening pro- 
duced by the "elastic" interactions at 0 K, in the 
absence of  thermal fluctuations. As pointed out 
before, the energy required to overcome the inter- 
action is only A E m 0 . 4 4 e V  (7.1 x 10 -=~ J), and 
this is reduced to 0.1 eV (1.6 x 10 -=~ J) at a stress 
o f  about half of  the athermal stress, re. Therefore, 
thermally-aided motion can occur easily at room 

*It may be worthwhile to point out that the Fma x in Equation 15 is a localized resistance force which is taken here to 
be the same as the Fma x obtained by the method of Sectinn 3. 
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Figure 6 Force of interaction 
between a [110] cross-link and 
a r/[a, b, 0] edge dislocation 
gliding on a (1 i0) plane. 

temperature and the hardening effect of  this type 
of  interaction is probably negligible at this tem- 
perature. 

3.2. Edge dislocation of ~7 (a, b, 0) Burgers 
vector lying along [0 0 1 ], (Type 7) 

The perfect dislocation, where r / =  1, if it exists 
at all, is most probably dissociated into partials 
[6] so that the partial dislocations where r / =  0.5, 
0.386 and 0.114 will be considered here. The 
first o f  these is a slip dislocation, the other two 
are the (1 1 0) complementary twin, and the 
(1 10)  twin partial dislocations, respectively. 
These dislocations glide on the ( 1 ] ' 0 ) p l a n e  
and interact with [1 1 0J cross-links, as shown in 
Fig. 6. 

The glide force of  interaction when d = 0 
is given by 

F = --  O . 0 6 8 p u b / l  2 (16) 

and for any other value of  cl, (d 4= 0) the glide 
force is represented graphically in Fig. 6. This 
force is attractive on one side of  the cross-link, 
and repulsive on the other, the maximum values 
of  Fma x being of  about the same magnitude, i.e., 

[;max "~ lO.06palb/d2l .  (17) 

The strongest interaction is experienced with 

cross-links which are at a distance of  one inter- 
atomic spacing from the glide plane, (d = 2.1 x 
10 -l~ m), and with b = rl(a 2 + bZ) 1/2, the maxi- 

mum values o f  this force, Fro, for the three dif- 
ferent dislocations Burgers vectors are given in 
Table I where the critical angles, O, the critical 
stresses, re, and the interaction energies, AxE, 
are also tabulated. 

In obtaining the values in Table I, the line 
tension, T, has been estimated from the data of  
Figs 4 and 6 of [7], and the nearly-hexagonal 
nature o f  the polyethylene lattice has been invoked. 
In the calculation of  r e in terms of  the atomic 
concentration of  cross-links, X, the fact that only 
half of  the total number of  nearest-neighbour 
cross-links are of  the [1 1 0]- type has also been 
taken into account. 

The result, that the angle, 0, for the 0.114 
(a, b, 0) twin dislocation is > 90 ~ implies that 
these dislocations must by-pass the cross-links 
by the Orowan looping mechanism, in which 
case the critical stress, ~-c, is given by [14] 

1 

re = 2Tn-~/b. (18) 

The values of  AxE are all low enough, especially 
for the twin partial dislocation, for thermally- 
aided motion past the obstacles to be easy at 
room temperature. 

T A B L E I Data for the elastic interaction between ~ (a, b, O) dislocations and [ 110] -type cross-links 

Dislocation with b --- ~ (a, b, 0) Fmax(X 10 -~o N) 0 (o) re n -1/2 (Nm -1 ) re x-1/2 (GPa) zXE (eV) 

rZ = ~ 3.2 40-65 0.58 2.4 0.7 
= 0.386 3.0 40-65 0.68 2.8 0.54 

r/= 0.114 0.73 > 90 0.31 1.3 0.16 
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Figure 7 Force of interaction 
between a [110] crossqink and 
a ~[a, b, 0] edge dislocation 
gliding on a (110) plane. 

The elastic force of interaction between Type 7 
dislocations and cross-links of [1 To]-type (con- 
figuration of Fig. 7) is plotted in Fig. 7 for any 
value of d =/= 0. The maximum value of this force 
is approximately 

Fma x "" lO.12pnb/d21. (19) 

Using again the data of Figs 4 and 6 of [7], and 
the appropriate values of b, the set of values of 
Table II are obtained for the athermal stresses and 
energies required to drive the dislocations through 
a random concentration of [110]  cross-finks 
not intersecting the slip plane. From the values of 
AxE it is clear the thermally-activated motion will 
be easy at moderate temperatures, in particular 
at room temperature. 

3.3. Screw dislocations with (0, b, O) 
Burgers vector (Type 3) 

This dislocation produces transverse slip and glides 
on the [1 00] plane. Its interaction with a [1 1 0] 
cross-link is illustrated by the configuration ot 
Fig. 8. When d = 0 the interaction force is 

F = O.0726pllb/l 2, (20) 

and this is the same, but of opposite sign, if the 
cross-link is in the [ 1 ]-0]-direction. For any other 
slip plane (d 4: 0) the interaction force with a 

T A B L E I I  Da ta  for  t h e  elast ic  i n t e r ac t i on  b e t w e e n  rl <a, 

[1 1 0] cross-link is as plotted in Fig. 8. Again, for 
a [1 T0] cross-link the interaction is the same but 
of opposite sign. The maximum value of F in 
Fig. 8 is about [O.055pllb/d2[, and the mini- 
mum is of opposite sign but only of magnitude 
10.007pllb/d21. Therefore, the strength of the 
elastic obstacle that the cross-link presents to the 
(0, b, 0) screw dislocation depends upon the 
direction in which the dislocation is moving. 

Considering only the strongest interaction, 
for which Fmax -~ 10 -1~ N, the critical breaking 
angle for a bowing dislocation is given by 

0.41 x 10 -1~ 
sin 0 - , (21) 

T 

and from Fig. 4 of [7] this is found to be 0 ~_ 5 ~ 
The dislocation remains almost straight as it over- 
comes the cross-link. Taking T " 5 . 6  x 10-1~ 
[9], the athermal critical stress becomes re -~ 
0.06nl/~Nm -1 =0.24xa/2GPa. This is clearly 
much smaller than the critical stress arising from 
the interaction with edge dislocations of the same 
Burgers vector. Furthermore, the energy required 
to drive the dislocation past the obstacle is AXE = 
O.06pllb/d, or AE=-0.27 eV (0.43 x 10-19 J) for 
the strongest cross-links, so that these cross-links 
present a very weak obstacle to the motion of 
(0, b, 0) screw dislocations at room temperature. 

b, 0> d is loca t ions  and  [ 1 1 0  ] t y p e  cross-l inks 

Dislocation with b =- 71 (a, b,  0> Fmax(X 10 -lo N) 0 (o) ~.en -1/2 (Nm -1 ) re x-1/2 (GPa) ~ (eV) 

= ~ 1.7 23 -59  0.23 1.0 0.36 
= 0.386 2.0 23 -59  0.27 1.2 0.28 
= 0.114 74 0.31 1.3 0.08 
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Figure 8 Force of interaction 
between a [110] cross-link and 
a [0, b, O] screw dislocation 
gliding on a (100) plane. 

3.4. Screw dislocations with r~ (a, b, O) 
Burgers vector, (Type 4) 

The stress field of  this dislocation which glides 
on the (110)-plane,  producing transverse slip, 
has not  been obtained explicitly, but the inter- 
action with cross-links can be estimated by invoking 
the nearly-hexagonal symmetry of the polyethylene 
lattice. It  is to be noted that in this approximation 
there is no elastic interaction between the dis- 
location and a cross-link which is parallel to it (as 
for the dotted cross-link shown in Fig. 9). After 
taking the difference in Burgers vector and inter- 
planar spacing into account, the results of  Fig. 8 
can be used to estimate the interaction between 
the dislocation and "oblique" (or non-paralM) 
cross-links. This force depends also upon the 
direction of  movement  of  the dislocation. It  has 
a maximum value of  1.5 x 10 -1~ ~?N, when the 
dislocation moves in the [001  ] -direction in Fig. 9, 
and a maximum value of 2 x 10 - u  ~?N, when the 
dislocation moves in the opposite direction. Using 
the data of  Figs 4 and 6 of  [7], and the largest 
interaction force, it is estimated that the critical 
breaking angle for the �89 (a, b, O) and 0.386 (a, b, O) 

I [0Oll 

Figure 9 ~[a, b, 0] screw dislocation gliding on a (110) 
plane. 

partial dislocations is less than t2  ~ . The twin 
partial 0.114 (a, b, 0), which must move in the 
[001]-di rec t ion  to produce the twin monolayer, 
experiences a much smaller interaction force, of  
only 2.3 x 10 -12 N, with a critical breaking angle 
0 < 6 ~ The cross-links present are therefore very 
weak obstacles to the ~(a, b, O) screw dislocations 
at 0 K. With the aid of  thermal fluctuations the 
strength of the obstacles would be negligible 
at room temperature. 

3.5. Screw dislocations with [0, 0, c] 
Burgers vector, (Type 1 ) 

This is the only dislocation which can produce 
chain-axis slip and it has no linear elastic inter- 
action with cross-links lying on [001]-planes  
because, for this dislocation, 

r r D r  

= = = o .  ( 2 2 )  

A small non-linear long-range interaction can 
arise, since the dislocation will produce a small 
shear of  the cross-linked molecules along their 
length, changing the cross-link orientation, but 
this is a minor effect when compared with the 
interaction which arises from the direct inter- 
section, to be discussed later. 

4. Direct interaction between cross-links 
and dislocations 

The "direct" interactions arise when the cross- 
links intersect the glide plane of the dislocations, 
as in the case of  cross-links of  Types 1 and 2 of  
Figs 1 and 2. The direct interaction with a cross- 
link of  Orientation 1 should be relatively weak 
because, if the dislocation overcomes the elastic 

151 



force and glides past the cross-link, this is only 
re-orientated from Position 1 to Position 2. The 
elastic energy of the cross-link is not increased, 
and it is unlikely that the cross-link will be broken 
provided that chain rotation can occur. The force 
needed for such a re-orientation cannot be readily 
estimated but it seems reasonable to assume that 
it will not be greater than the maximum force of 
interaction which, at I " ~ 4 1  10-a~ is about 
1.6 x 10 -1~ N. It has already been shown above 
that an obstacle of this strength is weak, especially 
at temperatures other than 0 K. After the passage 
of dislocations, all the cross-links of Type 1 will 
be re-orientated to Position 2 and in this orientation 
they will interact more strongly with further inter- 
secting dislocations of the same type. Even if the 
elastic force of interaction at small separations is 
overcome, the dislocation can cut through the 
cross-link of Type 2 only if this is stretched or 
broken. In order to investigate the possibility of 
either of these two processes occurring, the energy 
and force required to break a C-C  bond must be 
calculated. 

4.1. The strength of a C-C bond 
The potential energy, U, of a covalent bond in 
terms of the interatomic separation, r, can be 
expressed by the Morse potential [16] 

U(r) = D[1 - -  e-a(r'-re)] 2, (23) 

where D is the dissociation energy, re is the 
equilibrium separation of the atoms, and a is a 
constant. The force acting on each carbon atom 
towards the other is 

F(r) = dU/dr = 2aD{exp [-- a(r--  re) ] 

-- exp [-- 2a(r -- re] }, (24) 

and it has a maximum value 

where 

F(r') = ~ / 2 ,  (2S) 

In 2 
r '  = r e J r -  (26) 

a 

The value of D for a C-C bond in a chain hydro- 
carbon is given as D _~ 3.6 eV (5.76 x 10 -19 J)  
while for the diatomic molecule it is D ~-- 5.6 eV 
(8.96 x 1 0 - 1 9 j )  [17]. The value of a can be 
obtained from the first force constant, f ,  in the 
potential function, U', for the simple harmonic 
oscillator, 

U' = �89 2, (27) 

where x = r - re. This can be equated to 

U' = Da2x 2, (28) 

obtained from Equation 23 for small values of  
x, to give: 

f = 2Da 2. (29) 

Values of  f for both the C-C diatomic molecule 
and the C-C bond in large molecules are given 
as 9 . 2 5 x 1 0 2 N m  -1 and 4 . 5 x 1 0 2 N m  -a, res- 
pectively [18]. Moelwyn-Hughes [19] quotes 
values of f = 9 . 4 6 6 x 1 0 2 N m  -1 and 5x102  
N m -1 for the C-C molecule and the ethane 
molecule, respectively. It seems then reasonable 
to accept the values D = 3 . 6 0 e V  and f =  
4.5 x 102 N m  -1 for the C-C bond in polyethyl- 
ene, which give a = ( f /2D)  1/2 = 1.98 x 10 l~ m -1. 
The strength of the bond, or force needed to break 
the bond, is, from Equation 24. F = 5.7 x 10 -9 N 
and the atomic separation at which the bond 
breaks is (with r e = l . 5 4 x 1 0  -x~ r ' =  
1.89 x 10 -l~ m. The breaking strain of the cross- 
link is therefore 0.23. 

4.2. Direct interaction with "transverse 
slip" dislocations 

The force required to break the cross-link is much 
greater than the largest force which can arise 
from elastic interactions and it cannot be provided 
by any dislocation with (0, b, 0) Burgers vector 
bowing-out with an angle 0 < 90 ~ The energy 
needed to break the cross-link is 3.6 eV, and this 
is too high for thermal fluctuations to make any 
significant contribution to the breaking process. 

The direct interaction must therefore be over- 
come by Orowan looping or by bond stretching. 
Since the maximum stretch possible without 
breaking the cross-link is 23%, the cross-linked 
molecules would have to suffer a displacement 
nearly equal to a �89 b, O) lattice vector. The 
self-energy of the cross-link would be so high, and 
its elastic interaction with .the dislocation so large, 
that by-passing by Orowan looping would probably 
occur under a much smaller stress. This stress is, 
again, given by Equation 18 in terms of the cross- 
link density, n. With values for the line tension 
taken from Fig. 4 of [7] this stress becomes re = 
1.5n 1/2 N m  -1 = 4.2X 1/2 GPa for both (0, b ,0 )  
edge and (0, b, 0} screw dislocations (Types 3 
and 6). 

A similar consideration of the direct interaction 
of r/(a, b, 0} dislocations with cross-links shows 
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that the passage of a �89 b, 0) and/or a 0.386 
(a, b, 0) partial is easy when the cross-link is 
re-oriented without being greatly stretched (Fig. 2). 
When the cross-links have been re-oriented so that 
they join second, nearest-neighbour molecules, the 
movement of further dislocations in the same glide 
plane is strongly inhibited. Thus, multiple slip by 
the movement of (a, b, 0) dislocations as a dis- 
sociated pair would have to take place by the 
Orowan mechanism under a stress which is esti- 
mated to be, (assuming hexagonal symmetry) 
re "" 1.35n t/2 Nm -1 = 4X v2 GPa. 

Of particular interest is the case of a 0.114 
(a, b, O) edge partial which, in order to produce 
the twin monolayer, must glide in the [1 1 0]- 
direction. The direct intersection can be achieved 
by a small rotation of the cross-link, so that only 
the elastic force of interaction (Fma x = 2.3 x 
10 -n  N, at I =  4 x 10-1~ is significant. This 
force is overcome when the dislocation bows- 
out to an angle 0 " 6 0  ~. A similar conclusion 
is reached for the 0.114 (a, b, O) twin screw 
dislocation which glides in the [00 1]-direction 
to produce the twin monolayer. The stress needed 
to overcome the cross-links is not negligible, 
(re ~ 0.308n 1/2 N m -1 = 0.9• u2 GPa) but the 
interaction energy is small and the critical stress, 
re, would be greatly reduced by thermal activation 
at room temperature. 

4.3. In te rac t ion  w i t h  the  (0, 0, c)  cha in-s l ip  dislocation 
A (0, 0, c) screw dislocation should, in principle, 
be able to glide on any plane of the [ 001 ]  zone, 
and this apparent abil i ty to escape from any defect 
obstructing its motion seems to contradict the 
experimental evidence for suppression of c-axis 
slip by irradiation. It should be noted, however, 
that the slip plane of these dislocations is largely 
restricted by the orientation of the surface folds, 
and intersection with cross-links should readily 
occur because, as the dislocation moves, there is 
no linear elastic interaction force before a direct 
intersection takes place. Such an intersection is 
unlikely to break the C-C cross-link bond. This is 
because, although the line tension of the (0, 0, c) 
screw dislocation is very high, it decreases rapidly 
to zero as it deviates from this orientation by only 
15 ~ (Fig. 7 of [7]) and the dislocation cannot 
exert a large force on the pinning point. 

This large anisotropy of the dislocation line 
tension makes it extremely difficult for the dis- 
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Figure 10 The edge segment of a [0, O, c] dislocation 
loop around a cross-link producing bending of the molecu- 
lar chains. 

location to overcome the cross-links by Orowan 
looping. For this to happen dislocation loops with 
edge segments would have to be left around the 
cross-links, as shown in Fig. 10. The energy of 
the edge segments, and that of the dislocation 
configuration of Fig. 10 is very high and could 
only be achieved by a very large external stress. 
Unfortunately it is difficult to make a quantitative 
estimate of this stress because this dislocation will 
always tend to maximize the length of its screw 
component and its bowing cannot be treated as 
that of a flexible string with nearly constant line 
tension. 

If the dislocations were to cut through the 
cross-link without breaking it, the configuration 
of the defect which would be left behind would 
be as shown schematically in Fig. 11. The C-C 
bond at the cross-link would join atoms on dif- 
ferent (001)  planes. Large molecular bending 
and stretching with considerable lattice distortion 
would be required, hence this mode of inter- 
section leaves a configuration very similar to that 
produced by Orowan looping, and it should 
require about the same stress. The cross-links 
existing at the surface folds of the crystals would 
probably be easier to cut. 

5. Discussion and conclusions 
The deformation modes which produce transverse 

Is 
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o o_ [I 10] E 

o 
t 

Figure 11 Bending of the molecular chains resulting from 
the stretching of the cross-link along [0 01 ]. 
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slip in polyethylene crystals are made more 
difficult as a result of both "elastic" and "direct" 
interactions between cross-links and dislocations 
with (0, b, 0) and �89 b, 0) Burgers vectors 
(Types 3, 4, 6 and 7). Since the screw dislocations 
are able to overcome elastic interactions at a much 
lower stress than the corresponding edges, the 
latter only need to be taken into account in any 
discussion of the hardening arising from such 
interactions. 

All the elastic interactions which can arise in 
the deformation by transverse slip produce a 
hardening, or increase in yield stress at OK, 
which is between 1.4X v2 GPa and 3.4X 1/~ GPa 
where • is the number of  cross-links per carbon 
atom in the crystal. 

The contribution to the hardening which 
arises from the "direct" interactions, in transverse 
slip, results in an increase of  the yield stress of 
about 4X1/2GPa at OK, so that the hardening 
is not much greater than that due to elastic inter. 
actions. 

Whilst at very low temperatures both types of 
interaction make nearly-equal contributions to the 
hardening, the situation is very different at higher 
temperatures. The energy needed to overcome 
elastic interactions is only a fraction of 1 eV, and 
thermal fluctuations can help to reduce the 
hardening to a negligible level above the glass- 
transition temperature of polyethylene. However, 
the hardening arising from direct interactions 
should persist possibly up to the melting tem- 
perature of polyethylene because thermal activation 
would only make an insignificant contribution 
to the energy needed to overcome these inter- 
actions, which is about 3.6 eV. 

Since the re-orientation of a cross-link without 
stretching requires only a small energy, a limited 
amount of transverse slip may occur at a lower stress 
by the thermally-aided "unit slip" of ~(a, b, 0) 
dislocations. This seems to have been observed in 
the deformation of irradiated polyethylene 
crystals, even when all other slip modes had been 
entirely suppressed [21. 

Transverse ( i  1 0) twinning as a deformation 
mode should become more difficult at 0 K as a 
result of both elastic and direct interactions 
between 0.114 (110 )  dislocations and cross- 
links. Both types of interaction raise the twinning 
stress by about the same amount: between 1 and 
2X 1/2 GPa. However, at temperatures above the 
glass-transition temperature the twinning dis- 

154 

locations should be able to overcome easily any 
interaction with cross-links with the aid of thermal 
activation. This could explain why twinning is 
observed to operate more easily than slip at room 
temperature in irradiated crystals [2]. 

Qualitative arguments have been presented 
above to suggest that the e-chain axis slip, due to 
glide of (0, 0, c) screw dislocations, is made very 
difficult by the direct dislocation-cross-link 
interactions. In fact the stress which would be 
required for rind screw dislocations to break 
through a concentration, X, of cross-links could 
be 100 times greater than that needed to activate 
transverse slip under the same cross-link concen- 
tration [ 11]. Of course such a large stress may not 
even be attainable, as is suggested by the results 
of  Voigt-Martin and Andrews [2] who observed 
micro-cracking of the irradiated crystals before 
any evidence for any c-chain axis slip could be 
detected. 

Any plasticity after irradiation seems to be due 
to the movement of  dislocations producing trans- 
verse slip and, if this is the case, the degree of 
hardening or increase in yield stress produced by 
interaction with cross-links is expected to be of 
the order of 4 X u2 GPa. There is not much experi- 
mental data with which to compare this, but 
Andrews [3] has calculated that 160 Mrads of ~,- 
radiation gives a crystallite hardening of about 
10MPa and therefore this gives X = 6.25 x 10 -6 

for the cross-link concentration. This represents 
one cross-link per 160000 carbon atoms, or an 
average cross-link spacing of 1.6 x 10 -8 m, which 
is not unreasonable, since it is of  the same order of 
magnitude as the crystallite thickness. 

Appendix 
The elastic constants Si.i are given in terms of the 
stiffnesses Ci/as, 

Sl l  = (C22 C33 - C~D/P 

S22 = (Cll  C33 --  C21) / r  

$33 = (C1~C22 - C~2)/r 

$ 4 4 - -  1/C44 

Sss = 1/Css 

$66 : 1/C66 

$12 = (C31C~3 - C12C33)/F 

S:3 = (C12 C31 - C23 C~1 )/P 



T A B L E A I Dislocations parallel to [100] (where/3 = 1 GPa) 

0"n b2xa(-- 0.298 x~ + 0.00421 x~) + bax2(O.124x~ + 0.0723 x 2) 

0"22 

(x~ + 2.99x22 x~ + 0.034x~) 

- -  b2x 3 (2.362 x 2 + 0.0253 x~) + bax2 (0.745 x~ -- O. 137 x~ ) 

0"33 

(x4: + 2 .99x  2 x 2 + 0 .034x  4) 

b2x3(0.745 x~ -- 0.137 x~) + b3x~(4.05 x~ + 12.84 x~) 
/3 (x 4 + 2.99 x 2 x 2 + 0.034 x 4) 

0"1___2 = - - 0 . 5 3 3 b l x 3  

/3 (x~ + 2.64 x~) 

0"2___3 = (b2x2 + baxa)(0.745 x 2 -- 0.137 x~) 

t3 (x~ + 2.99 x~ x23 + 0.034 x~)  

0"ai 0.202 blx2 

/~ (x~ + 2.64x23) 

T A B L E A I I Dislocations parallel to [ 0 1 0 ]  (where ~ = 1 GPa) 

o1__2 = bax ~ ( 2.20 x~ -- 1 6 . 0 7 x ~ ) +  b~ x 3 (O.302 x~ + 100.9x~) 

/3 

0"22 

(x~ + 326.8x~ x~,+ 53 .2x  4) 

b3xl (-- 14.54 x~ -- 6.08 x~) + blx3 (0.114 x 2 + 22.82 x 2) 

/3 (x'~ + 326.8x~ x~ + 53.2x41) 

0.3___3 = -- b3x x ( 73 5.9 x~ + l 1 7 . 2 x ~ ) + b l x 3 ( 2 . 2 0 x ~ - - 1 6 . 0 7 x ] )  

/3 (x 4 + 326.8 x~ x l  2 + 53.2 x'~) 

o12 0.384 b2xa 

(x~ + 1 .37xl  2) 

023 - -0 .528 b2xl 

/3 (x~ + 1.37 x~) 

0.31 (b3x3 + blxl)(2.20x~ -- 16.07x21) 

/~ (x~ + 326.8x~ x21 + 53 .2x  4) 

T A B L E A I I I Dislocations parallel to [001] (where/3 = 1 GPa) 

oxl --blX2(1.O94x~ +0 .221x~)+ b2xl (0 .398xl  2 - - 0 . 2 9 7 x ~ )  

/3 (x~ + 2.003 x~ x~ + 0 .555x~)  

o= bax2(O.398x~ --O.297x~)+b2xx(O.535x~ + 147x~)  

/3 (x 4 + 2.003 x~ x2z + 0 .555x~)  

03___3 = b lx 2 (-- 0.168 x~ -- 0.267 x~) + b2xl (0.483 x~ + 0.799 x~ ) 
/3 

012 

/3 

023 

/3 

031 

/3 

(x~ + 2.003 x~ x~ + 0.555 x~) 

(b 1X 1 -}- b2x2 )(0.398 x~ -- 0.297 x~ ) 

(x~ + 2.003 x~ x~ + 0.555x~) 

0.273 b3Xl 

(x~ + 0.276x~) 
-- 0.0652 b3x2 

(Xl z + 0.276 x~) 
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and 

$31 = (C23C12 - C31  c22)/r, 
where 

1" = C l l  C22 Ca3 - C l l  C-~3 - C2~ C ~  - C33 C~2 

+ 2C12C23C31 > O. 

The values of Cij used in this paper have been taken 

from [6]. 
With these values, the stress fields of infinitely- 

long straight dislocations are given by the follow- 
ing expressions when referred to a co-ordinate 
system with axes parallel to the unit  cell vectors 

[11].  
The stress fields for dislocations parallel to 

[100] ,  [010]  and [001]  are given in Tables AI 
to AIII, respectively. 
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